Measurement: Out Shopping

| Aim: |
| :--- | :--- | :--- |
| I can read, write and convert between |
| standard units of mass. |
| I can read, write and convert between |
| standard units of mass. | | Success Criteria: |
| :--- |
| I can convert kilogram measurements with |
| fractional quantities, to grams. |
| I can convert units of mass by multiplying |
| and dividing by one thousand. |
| I can solve mass problems involving |
| conversion between kilograms and grams. |
| I can use up to three decimal places when |
| reading, writing and converting units of mass. |\quad| Resources: |
| :--- |
| Lesson Pack
 Individual whiteboards and pens - class set |
| Key/New Words:
 Mass, convert, kilogram, gram. |
| Preparation:
 Converting Measurement Units Fortune
 Teller - one per pair |
| Differentiated Out Shopping Activity Sheet
 - one per child
 Extra Challenge Activity Sheet - as
 required |

Prior Learning: It will be helpful if children know the basic conversions of metric measurements of mass.

Learning Sequence

Fortune Teller: In pairs, children use the Converting Measurement Units Fortune Teller. The fortune teller
practises basic conversions for length, mass, volume and time. Children can devise their own questions using a
blank fortune teller template.

$\left({ }^{n} \Xi^{n}\right)$	Converting Units of Mass: Children mass to smaller units and from sma Children convert from kilograms to grams and vice versa. Conversions are whole numbers and with three decimal places. They solve a simple comparison problem, involving converting between grams and kilograms. They write their own problem, which involves conversion between grams and kilograms. They give an answer to their own problem.	e Out Shopping Activity larger units and solving p Children convert from kilograms to grams and vice versa. Conversions are whole numbers and with one, two and three decimal places. They chose a measurement (out of three given) which fits between two other measurements. They solve a problem, involving converting between grams and kilograms. They write their own problem, which involves conversion between grams and kilograms. They give an answer to their own problem.	erting from larger units of ving conversion. Children convert from kilograms to grams and vice versa. Conversions are whole numbers and with one, two and three decimal places. They chose a measurement (out of several given) which fits between two other measurements. They solve a problem, involving converting between grams and kilograms. They write their own problem, involving converting between grams and kilograms. The problem needs to include a multiplication calculation. They give an answer to their own problem. An Extra Challenge Activity Sheet is also included.	\bigcirc
	Who is Correct? Children solve pr kilograms and the other in grams. Ch answer and ask for somebody to ex	ving calculation of mass, who is making a stateme is is the correct answer.	measurement is written in orrect. Reveal the correct	\bigcirc

Exploreit

Measureit: Children estimate the mass of objects around the classroom. They use scales to weigh them and record answers in both kilograms and grams. They order the objects from lightest to heaviest.
Makeit: Children make a board game to practise the skills learned in the lesson. The game is to include a set of cards which ask conversion questions. Once the game has been made, groups can play the game and review the suitability of it.

\square
 Maths

Measurement

Out Shopping

Regent Studies | www.regentstudies.com

Aim

- I can read, write and convert between standard units of mass.

Success Criteria

- I can convert kilogram measurements with fractional quantities, to grams.
- I can convert units of mass by multiplying and dividing by one thousand.
- I can solve mass problems involving conversion between kilograms and grams.
- I can use up to three decimal places when reading, writing and converting units of mass.

Fortune Teller

In your pairs, use the Converting Measurement Units Fortune Teller to practise basic conversion of mass, length, time and volume. Use the blank template to make your own Fortune Teller.

Converting from Larger Units to Smaller

How can you calculate how many grams there are in three quarters of a kilogram?

Divide by 4, then multiply by 3.

Converting from Larger Units to Smaller

Speed Task: Convert these amounts from kg to g as fast as you can!

Converting from Larger Units to Smaller

How do you convert from kilograms to grams?
Multiply by 1000.

Sophie has been converting these measurements. Is she correct?
Place a tick by the ones correct and a cross by the ones not.

1.655 kg	3.956 kg	7.75 kg	9.12 kg	2.6 kg	7.9 kg
$\mathbf{1 6 5 5 g}$	$\mathbf{3 9 5 6 g}$	$\mathbf{7 7 5 0 g}$	$\mathbf{9 1 2 0 g}$	$\mathbf{2 6 0 0 g}$	$\mathbf{7 9 0 0} \mathbf{X}$

Correct any conversions which are incorrect.

Converting from Smaller Units to Larger

How do you convert from grams to kilograms?

Divide by 1000.

Match the measurements on the left to the ones on the right. There is one pair which does not match. Can you find the incorrect match?

Whose Bag Weighs Most?

Three friends have been shopping. The following items are inside each person's bag. Do any of the bags have a mass greater than 5 kg ? Remember to use the same unit of measurement Fither convert all measurements to arams or convert all measuremen

Answer
s for you.

- 1500 g pc
- 3 tins we
- A carton
- 5 packet:

Chad's and Sunita's bags are over 5 kg .

h

J 1.95 kg

- 2.2 kg fruit
- 2 bottles washing up liquid, each weighing 235 g
- Washing powder weighing 1.06 kg
- 3 tins each weighing 350 g

Whose Bag Weighs Most?

Chad decides to separate his items into two bags.
How can he separate the bags so that they are fairly equally balanced? Here is one way. Can you separate the items so that they are more evenly balanced?

Out Shopping

Who is Correct?

Two friends meet one another whilst out shopping.

They both have their babies with them. Both of them think they have the heavier baby. Who is correct? Explain how you know.

My baby was 450 g when she was born. She is now 500 g heavier. I have the heavier baby.

My baby was 0.65 kg . When he was born. He has gained 400 g . My baby is heavier than Sheena's baby.

Salina

Answer:
Salina is correct. Sheena's baby is $450 \mathrm{~g}+500 \mathrm{~g}=950 \mathrm{~g}$ Salina's baby is $650 \mathrm{~g}+400 \mathrm{~g}=1050 \mathrm{~g}$

Who is Correct?

Two sweet sellers have some sweets.
Who is correct? Explain how you know.

I have a 8000 g bag of sweets. I have already sold 375 g . I have the greater mass of sweets left.

Tina

Answer:

Tina is correct.

$$
8000 g-375 g=7625 g
$$

Toby
Answer:
Tina is correct.
$8000 \mathrm{~g}-375 \mathrm{~g}=7625 \mathrm{~g}$
$3.75 \times 2=7.5 \mathrm{~kg}=7500 \mathrm{~g}$

$$
3.75 \times 2=7.5 \mathrm{~kg}=7500 \mathrm{~g}
$$ bag weighs 3.75 kg . I haven't sold any sweets yet. I have the greater mass of sweets left.

Aim

- I can read, write and convert between standard units of mass.

Success Criteria

- I can convert kilogram measurements with fractional quantities, to grams.
- I can convert units of mass by multiplying and dividing by one thousand.
- I can solve mass problems involving conversion between kilograms and grams.
- I can use up to three decimal places when reading, writing and converting units of mass.

Regent Studies| www.regentstudies.com

Aim: I can read, write and convert between standard units of mass.

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Aim: I can read, write and convert between standard units of mass.				Date:					
				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can convert kilogram measurements with fractional quantities, to grams.				Notes/Evidence					
I can convert units of mass by multiplying and dividing by one thousand.									
I can solve mass problems involving conversion between kilograms and grams.									
I can use up to three decimal places when reading, writing and converting units of mass.									
Next Steps									

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Out Shopping

I can read, write and convert between standard units of mass.

1. Convert these kilogram measurements to grams by multiplying by 1000.

8 kg	2 kg	6 kg	8.422 kg	9.263 kg	
2.835 kg					
$\times 1000$					
8000 g			8422 g		

2. Theo has been converting from grams to kilograms. If he is correct, mark the conversion with a tick. If he is wrong, mark it with a cross.

2500 g	8100 g		9500 g		8654 g
2.5 kg	8.1 kg	95 kg	8.654 kg	0.9342 kg	1.899 kg

3. Here are the mass of some items in a shop. Order this set of mixed measurements from smallest to greatest mass.
2.754 kg
0.271 kg
3275 g
2.573 kg
725 g
4. Who is carrying the heavier bag? Show how you worked out the answer.

\square
5. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. Write an answer for the problem.

Out Shopping

I can read, write and convert between standard units of mass.

1. Match the measurements on the left with the conversion on the right. There is one pair which does not match.

Write a conversion for both of the unmatched measurements.
2. a) Which of these measurements comes between 955 g and 1.1 kg ?

955 g		1.1 kg

1200 g
0.91 kg
1.05 kg
b) Which of these measurements comes between 6.75 kg and 1.33 kg ?
$\left.\begin{array}{|l|l|l|}\hline 6.75 \mathrm{~kg} & & 1.33 \mathrm{~kg} \\ \hline\end{array} \begin{array}{|c}1.4 \mathrm{~kg} \\ 875 \mathrm{~g} \\ 6800 \mathrm{~g}\end{array}\right]$
3. This is Lucinda's shopping. Her bag can only carry 5.5 kg . Can Lucinda put all of her shopping in her bag? Show how you worked out the answer.

Apples 1.25 kg 2 bottles washing up liquid each 0.45 kg

Box of cat food 2750g
5 cans of beans, each 245 g

How much greater or less than 5.5 kg is the bag's total mass? Write your answer in kilograms, using decimal notation.
\qquad
\qquad
\qquad
4. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. The problem needs to include subtraction. Write the answer to the problem.

Out Shopping

I can read, write and convert between standard units of mass.

1. Fill in the missing measurements, converting between kilograms and grams.

Kilograms	Grams
1.54 kg	
	2400 g
0.05 kg	24 g
	10850 g
1.349 kg	
2.009 kg	
7.3 kg	
	3560 g
1.09 kg	2 g

2. Choose one of the masses to fit between each pair of measurements.

10.65 kg		20000 g
50 g		1 kg
6.1 kg		6 kg
1000 g		2000 g
5900 g		6 kg
7.33 kg		8500 g
0.1 kg		20 g

3. This is Muhammed's shopping. His bag can only carry 5.5 kg . How much more can he put in the bag? Write your answer in grams and in kilograms, using decimals. Show how you worked out the answer.

Oranges 957g
2 bottles, each 0.155 kg
3 cans dog food, each 585g
Can of vegetables, 0.6 kg
4. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. The problem needs to include a multiplication calculation. Write the answer to the problem.

Out Shopping Answers

1. Convert these kilogram measurements to grams by multiplying by 1000.

8 kg	2 kg	6 kg	8.422 kg	9.263 kg	
$\times 1000$					
8000 g	2000 g	6000 g	8422 g	9263 g	2835 g

2. Theo has been converting from grams to kilograms. If he is correct, mark the conversion with a tick. If he is wrong, mark it with a cross.

2500 g	8100 g	9500 g	8654 g	9342 g	1899 g
2.5 kg	8.1 kg	95 kg	8.654 kg	0.9342 kg	1.899 kg
\checkmark	\checkmark	\times	\checkmark	\times	\checkmark

3. Here are the mass of some items in a shop. Order this set of mixed measurements from smallest to greatest mass.
0.271 kg

7259
2.573 kg
2.754 kg

32759
4. Who is carrying the heavier bag? Show how you worked out the answer.

Tim's bag has a mass of 3755 g or 3.755 kg .
Harvinder's bag has a mass of 4250 g or 4.25 kg .
Harvinder's bag is the heavier.
5. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. Write an answer for the problem.
Multiple possible answers. Ensure the answer matches the problem.

Out Shopping Answers

1.

Write a conversion for both of the unmatched measurements.

$$
\begin{aligned}
1550 \mathrm{~g} & =1.55 \mathrm{~kg} \\
1.5 \mathrm{~kg} & =1500 \mathrm{~g}
\end{aligned}
$$

2. a) Which of these measurements comes between 955 g and 1.1 kg ?

955 g	1.05 kg	1.1 kg

b) Which of these measurements comes between 6.75 kg and 1.33 kg ?

6.75 kg	1.4 kg	1.33 kg

3. This is Lucinda's shopping. Her bag can only carry 5.5 kg . Can Lucinda put all of her shopping in her bag? Show how you worked out the answer.
No, Lucinda's shopping has a mass of 6.125 kg or 6125 g . This is 0.625 kg greater than 5.5 kg .
4. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. The problem needs to include subtraction. Write the answer to the problem.
Multiple possible answers. Ensure the answer matches the problem.

Out Shopping Answers

1. Fill in the missing measurements, converting between kilograms and grams.

Kilograms	Grams
1.54 kg	1540 g
2.4 kg	2400 g
0.024 kg	24 g
0.05 kg	50 g
10.85 kg	10850 g
1.349 kg	1349 g
2.009 kg	2009 g
0.722 kg	772 g
7.3 kg	7300 g
3.56 kg	3560 g
0.002 kg	2 g
1.09 kg	1090 g

2. Choose one of the masses to fit between each pair of measurements.

10.65 kg	19000 g	20000 g
50 g	850 g	1 kg
6.1 kg	6.055 kg	6 kg
1000 g	1.5 kg	2000 g
5900 g	5.91 kg	6 kg
7.33 kg	7500 g	8500 g
0.1 kg	50 g	20 g

3. This is Muhammed's shopping. His bag can only carry 5.5 kg . How much more can he put in the bag? Write your answer in grams and in kilograms, using decimals. Show how you worked out the answer.

Another 1.878 kg or 1878 g can be put into the bag.

4. Write a word problem, with a shopping theme, involving two measurements: one written in grams, the other in kilograms. The problem needs to include a multiplication calculation. Write the answer to the problem.
Multiple possible answers. Ensure the answer matches the problem.

Converting Units of Mass

I can read, write and convert between standard units of mass.

You already know that $1 \mathrm{~kg}=1000 \mathrm{~g}$. Have you heard of the metric tonne? A metric tonne is equal to 1000 kg . We use t for an abbreviation.

$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{t}=1000 \mathrm{~kg}$	$1 \mathrm{t}=1000 \times 1000=1000000 \mathrm{~g}$

Convert these measurements:

	Answer
$8 \mathrm{t}=$	kg
$3.5 \mathrm{t}=$	kg
$2.45 \mathrm{t}=$	kg
$3.999 \mathrm{t}=$	kg
$5500 \mathrm{~kg}=$	t
$8450 \mathrm{~kg}=$	t
$4115 \mathrm{~kg}=$	t
$657 \mathrm{~kg}=$	t
$5000000 \mathrm{~g}=$	g
$2.5 \mathrm{t}=$	g
$3.85 \mathrm{t}=$	t
$1250000 \mathrm{~g}=$	t
$3455600 \mathrm{~g}=$	
$435500 \mathrm{~g}=$	

Converting Units of Mass Answers

	Answer
$8 \mathrm{t}=$	8000 kg
$3.5 \mathrm{t}=$	3500 kg
$2.45 \mathrm{t}=$	2450 kg
$3.999 \mathrm{t}=$	3999 kg
$5500 \mathrm{~kg}=$	5.5t
$8450 \mathrm{~kg}=$	$8.45 t$
$4115 \mathrm{~kg}=$	$4.115 t$
$657 \mathrm{~kg}=$	$0.675 t$
$5000000 \mathrm{~g}=$	St
$2.5 \mathrm{t}=$	2500000 g
$3.85 \mathrm{t}=$	3850000 g
$1250000 \mathrm{~g}=$	$1.25 t$
$3455600 \mathrm{~g}=$	$3.4556 t$
$435500 \mathrm{~g}=$	$0.4355 t$

Converting Measurement Units Fortune Teller

Instructions

(1)

With pictures face down, fold on both diagonal lines. Unfold.
(2)

Fold all four corners to the centre.

Turn paper over.
(4)

Once again, fold all corners to the centre.
(5)

Fold paper in half and unfold.
(6)

Fold in half from top to bottom. Do not unfold.

Slide thumbs and forefingers under the squares and move the fortune teller back and forth to play.

Converting Measurement Units Fortune Teller

Instructions

(1)

With pictures face down, fold on both diagonal lines. Unfold.
(2)

Fold all four corners to the centre.

Turn paper over.
(4)

Once again, fold all corners to the centre.
(5)

Fold paper in half and unfold.
(6)

Fold in half from top to bottom. Do not unfold.

Slide thumbs and forefingers under the squares and move the fortune teller back and forth to play.

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when		
reading, writing and converting units of mass.		

Measurement \| Out Shopping
I can read, write and convert between standard units of mass. I can convert kilogram measurements with fractional quantities, to grams. I can convert units of mass by multiplying and dividing by one thousand. I can solve mass problems involving conversion between kilograms and grams. I can use up to three decimal places when reading, writing and converting units of mass.

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when reading, writing and converting units of mass.		

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when reading, writing and converting units of mass.		

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when reading, writing and converting units of mass.		

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when reading, writing and converting units of mass.		

Measurement | Out Shopping

I can read, write and convert between standard units of mass.		
I can convert kilogram measurements with fractional quantities, to grams.		
I can convert units of mass by multiplying and dividing by one thousand.		
I can solve mass problems involving conversion between kilograms and grams.		
I can use up to three decimal places when reading, writing and converting units of mass.		

